The PPARγ ligand rosiglitazone attenuates hypoxia-induced endothelin signaling in vitro and in vivo.
نویسندگان
چکیده
Peroxisome proliferator-activated receptor (PPAR) γ activation attenuates hypoxia-induced pulmonary hypertension (PH) in mice. The current study examined the hypothesis that PPARγ attenuates hypoxia-induced endothelin-1 (ET-1) signaling to mediate these therapeutic effects. To test this hypothesis, human pulmonary artery endothelial cells (HPAECs) were exposed to normoxia or hypoxia (1% O(2)) for 72 h and treated with or without the PPARγ ligand rosiglitazone (RSG, 10 μM) during the final 24 h of exposure. HPAEC proliferation was measured with MTT assays or cell counting, and mRNA and protein levels of ET-1 signaling components were determined. To explore the role of hypoxia-activated transcription factors, selected HPAECs were treated with inhibitors of hypoxia-inducible factor (HIF)-1α (chetomin) or nuclear factor (NF)-κB (caffeic acid phenethyl ester, CAPE). In parallel studies, male C57BL/6 mice were exposed to normoxia (21% O(2)) or hypoxia (10% O(2)) for 3 wk with or without gavage with RSG (10 mg·kg(-1)·day(-1)) for the final 10 days of exposure. Hypoxia increased ET-1, endothelin-converting enzyme-1, and endothelin receptor A and B levels in mouse lung and in HPAECs and increased HPAEC proliferation. Treatment with RSG attenuated hypoxia-induced activation of HIF-1α, NF-κB activation, and ET-1 signaling pathway components. Similarly, treatment with chetomin or CAPE prevented hypoxia-induced increases in HPAEC ET-1 mRNA and protein levels. These findings indicate that PPARγ activation attenuates a program of hypoxia-induced ET-1 signaling by inhibiting activation of hypoxia-responsive transcription factors. Targeting PPARγ represents a novel therapeutic strategy to inhibit enhanced ET-1 signaling in PH pathogenesis.
منابع مشابه
Hypoxia Mediates Mutual Repression between microRNA-27a and PPARγ in the Pulmonary Vasculature
Pulmonary hypertension (PH) is a serious disorder that causes significant morbidity and mortality. The pathogenesis of PH involves complex derangements in multiple pathways including reductions in peroxisome proliferator-activated receptor gamma (PPARγ). Hypoxia, a common PH stimulus, reduces PPARγ in experimental models. In contrast, activating PPARγ attenuates hypoxia-induced PH and endotheli...
متن کاملAsiaticoside attenuates hyperoxia-induced lung injury in vitro andin vivo
Objective(s): Asiaticoside (AS) displays anti-inflammation, and anti-apoptosis effect, but the role of AS in hyperoxia-induced lung injury (HILI) treatment is undefined. Therefore, the aim of this study was to investigate the effects of AS on HILI on premature rats and alveolar type II (AEC II) cells.Materials and Methods: Sprague-Dawley...
متن کاملPeroxisome proliferator-activated receptor gamma (PPARγ) regulates thrombospondin-1 and Nox4 expression in hypoxia-induced human pulmonary artery smooth muscle cell proliferation
Transforming growth factor-β1 (TGF- β1) and thrombospondin-1 (TSP-1) are hypoxia-responsive mitogens that promote vascular smooth muscle cell (SMC) proliferation, a critical event in the pathogenesis of pulmonary hypertension (PH). We previously demonstrated that hypoxia-induced human pulmonary artery smooth muscle (HPASMC) cell proliferation and expression of the NADPH oxidase subunit, Nox4, w...
متن کاملPPAR Gamma agonists regulate tobacco smoke-induced toll like receptor 4 expression in alveolar macrophages
BACKGROUND Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-activated transcription factor that exerts multiple biological effects. Growing evidence suggests that PPARγ plays an important role in inflammation; however, the effects of this transcription factor on the inflammation caused by smoking are unclear. METHODS We measured the expression of inflammatory cytokines (le...
متن کاملPPARγ activation attenuates glucose intolerance induced by mTOR inhibition with rapamycin in rats.
mTOR inhibition with rapamycin induces a diabetes-like syndrome characterized by severe glucose intolerance, hyperinsulinemia, and hypertriglyceridemia, which is due to increased hepatic glucose production as well as reduced skeletal muscle glucose uptake and adipose tissue PPARγ activity. Herein, we tested the hypothesis that pharmacological PPARγ activation attenuates the diabetes-like syndro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 301 6 شماره
صفحات -
تاریخ انتشار 2011